1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
| import torchvision from torch import nn from torch.nn import Conv2d from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter # 采集源数据 dataset = torchvision.datasets.CIFAR10("test-conv2d", train=False, transform=torchvision.transforms.ToTensor(), download=True) dataloader = DataLoader(dataset, batch_size=64)
# 定义自己的卷积操作 class Mynn(nn.Module): def __init__(self): super(Mynn, self).__init__() self.conv1 = Conv2d(in_channels=3, out_channels=1, kernel_size=2, stride=1, padding=0) # 卷积操作 def forward(self, x): x = self.conv1(x) return x
# 声明类和变量 mynn = Mynn() writer = SummaryWriter("log-conv2d") step = 0
# 查看卷积操作对数据产生的变化 for data in dataloader: imgs, tags = data output = mynn(imgs) # 查看原始数据格式 print(imgs.shape) # 查看格式是否发生变化 print(output.shape) # 用tensorboard查看具体图片是否变成了灰度图片 writer.add_images("input", imgs, step) writer.add_images("outpuut", output, step) # 多次写入 step = step+1 # 关闭写入 writer.close()
|