1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
| from torchvision import transforms from torch.utils.tensorboard import SummaryWriter from PIL import Image import numpy as np
# 准备数据 img_path = "D:\\python\\p1\\dataset\\malignant\\1 (8).BMP" img = Image.open(img_path)
# ToTensor把PIL类型或者numpy转化为tensor类型 tensor_train = transforms.ToTensor() tensor_img = tensor_train(img) writer = SummaryWriter("log-transforms") writer.add_image("malignant", tensor_img) # writer.close()
# Normalize 归一化处理 print(tensor_img[0][0][0]) trans_norm = transforms.Normalize([0.5, 0.5, 0.5], [1, 1, 1]) img_norm = trans_norm(tensor_img) print(img_norm[0][0][0]) writer.add_image("Normalize", img_norm)
# Resize调正图片大小比例等 trans_resize = transforms.Resize((500, 500)) img_resize = trans_resize(img) print(img_resize) img_resize = tensor_train(img_resize) print(img_resize) writer.add_image("Resize", img_resize) writer.close()
# Compose组合变化,Compose的参数就是多个transforms操作,组合后的参数的PIL.img,然后返回transform指定的数据类型,其实就是遍历Compose中的操作 trans_compose = transforms.Compose([transforms.Resize([125, 125]), tensor_train]) img_compose = trans_compose(img) writer.add_image("Compose", img_compose) writer.close()
|